Disclosure: when you buy through links on our site, we may earn an affiliate commission.

Python for Time Series Data Analysis

Learn how to use Python , Pandas, Numpy , and Statsmodels for Time Series Forecasting and Analysis!
(6,327 reviews)
34,228 students
Created by


CourseMarks Score®







Platform: Udemy
Video: 15h 21m
Language: English
Next start: On Demand

Table of contents


Welcome to the best online resource for learning how to use the Python programming Language for Time Series Analysis!
This course will teach you everything you need to know to use Python for forecasting time series data to predict new future data points.
We’ll start off with the basics by teaching you how to work with and manipulate data using the NumPy and Pandas libraries with Python. Then we’ll dive deeper into working with Pandas by learning about visualizations with the Pandas library and how to work with time stamped data with Pandas and Python.
Then we’ll begin to learn about the statsmodels library and its powerful built in Time Series Analysis Tools. Including learning about Error-Trend-Seasonality decomposition and basic Holt-Winters methods.
Afterwards we’ll get to the heart of the course, covering general forecasting models. We’ll talk about creating AutoCorrelation and Partial AutoCorrelation charts and using them in conjunction with powerful ARIMA based models, including Seasonal ARIMA models and SARIMAX to include Exogenous data points.
Afterwards we’ll learn about state of the art Deep Learning techniques with Recurrent Neural Networks that use deep learning to forecast future data points.
This course even covers Facebook’s Prophet library, a simple to use, yet powerful Python library developed to forecast into the future with time series data.
So what are you waiting for! Learn how to work with your time series data and forecast the future!
We’ll see you inside the course!

You will learn

✓ Pandas for Data Manipulation
✓ NumPy and Python for Numerical Processing
✓ Pandas for Data Visualization
✓ How to Work with Time Series Data with Pandas
✓ Use Statsmodels to Analyze Time Series Data
✓ Use Facebook’s Prophet Library for forecasting
✓ Understand advanced ARIMA models for Forecasting


• General Python Skills (knowledge up to functions)

This course is for

• Python Developers interested in learning how to forecast time series data
Head of Data Science at Pierian Training
Jose Marcial Portilla has a BS and MS in Mechanical Engineering from Santa Clara University and years of experience as a professional instructor and trainer for Data Science, Machine Learning and Python Programming. He has publications and patents in various fields such as microfluidics, materials science, and data science. Over the course of his career he has developed a skill set in analyzing data and he hopes to use his experience in teaching and data science to help other people learn the power of programming, the ability to analyze data, and the skills needed to present the data in clear and beautiful visualizations. Currently he works as the Head of Data Science for Pierian Training and provides in-person data science and python programming training courses to employees working at top companies, including General Electric, Cigna, The New York Times, Credit Suisse, McKinsey and many more. Feel free to check out the website link to find out more information about training offerings.
Browse all courses by on Coursemarks.
Platform: Udemy
Video: 15h 21m
Language: English
Next start: On Demand

Students are also interested in