Disclosure: when you buy through links on our site, we may earn an affiliate commission.

Physical Chemistry – Chemical Bonding

IIT JEE Main | Advanced | BITSAT | SAT | NEET | AP Physics | MSAT | MCAT | Course for high school, college
0.0
0.0/5
(0 reviews)
2 students
Created by

9.0

CourseMarks Score®

9.7

Freshness

N/A

Feedback

7.9

Content

Platform: Udemy
Video: 4h 1m
Language: English
Next start: On Demand

Top Physical Chemistry courses:

Detailed Analysis

CourseMarks Score®

9.0 / 10

CourseMarks Score® helps students to find the best classes. We aggregate 18 factors, including freshness, student feedback and content diversity.

Freshness Score

9.7 / 10
This course was last updated on 1/2022.

Course content can become outdated quite quickly. After analysing 71,530 courses, we found that the highest rated courses are updated every year. If a course has not been updated for more than 2 years, you should carefully evaluate the course before enrolling.

Student Feedback

We analyzed factors such as the rating (0.0/5) and the ratio between the number of reviews and the number of students, which is a great signal of student commitment.

New courses are hard to evaluate because there are no or just a few student ratings, but Student Feedback Score helps you find great courses even with fewer reviews.

Content Score

7.9 / 10
Video Score: 8.2 / 10
The course includes 4h 1m video content. Courses with more videos usually have a higher average rating. We have found that the sweet spot is 16 hours of video, which is long enough to teach a topic comprehensively, but not overwhelming. Courses over 16 hours of video gets the maximum score.
Detail Score: 10.0 / 10

The top online course contains a detailed description of the course, what you will learn and also a detailed description about the instructor.

Extra Content Score: 5.5 / 10

Tests, exercises, articles and other resources help students to better understand and deepen their understanding of the topic.

This course contains:

0 article.
0 resource.
0 exercise.
0 test.

Table of contents

Description

SUMMARY
Kössel’s first insight into the mechanism of formation of electropositive and electronegative ions related the process to the attainment of noble gas configurations by the respective ions. Electrostatic attraction between ions is the cause for their stability. This gives the concept of electrovalency.
The first description of covalent bonding was provided by Lewis in terms of the sharing of electron pairs between atoms and he related the process to the attainment of noble gas configurations by reacting atoms as a result of sharing of electrons. The Lewis dot symbols show the number of valence electrons of the atoms of a given element and Lewis dot structures show pictorial representations of bonding in molecules.
An ionic compound is pictured as a three-dimensional aggregation of positive and negative ions in an ordered arrangement called the crystal lattice. In a crystalline solid there is a charge balance between the positive and negative ions. The crystal lattice is stabilized by the enthalpy of lattice formation.
While a single covalent bond is formed by sharing of an electron pair between two atoms, multiple bonds result from the sharing of two or three electron pairs. Some bonded atoms have additional pairs of electrons not involved in bonding. These are called lonepairs of electrons. A Lewis dot structure shows the arrangement of bonded pairs and lone pairs around each atom in a molecule. Important parameters, associated with chemical bonds, like: bond length, bond angle, bond enthalpy, bond order and bond polarity have significant effect on the properties of compounds.
A number of molecules and polyatomic ions cannot be described accurately by a single Lewis structure and a number of descriptions (representations) based on the same skeletal structure are written and these taken together represent the molecule or ion. This is a very important and extremely useful concept called resonance. The contributing structures or canonical forms taken together constitute the resonance hybrid which represents the molecule or ion.
The VSEPR model used for predicting the geometrical shapes of molecules is based on the assumption that electron pairs repel each other and, therefore, tend to remain as far apart as possible. According to this model, molecular geometry is determined by repulsions between lone pairs and lone pairs ; lone pairs and bonding pairs and bonding pairs and bonding pairs. The order of these repulsions being : lp-lp > lp-bp > bp-bp.
The valence bond (VB) approach to covalent bonding is basically concerned with the energetics of covalent bond formation about which the Lewis and VSEPR models are silent. Basically the VB theory discusses bond formation in terms of overlap of orbitals. For example the formation of the H2 molecule from two hydrogen atoms involves the overlap of the 1s orbitals of the two H atoms which are singly occupied. It is seen that the potential energy of the system gets lowered as the two H atoms come near to each other. At the equilibrium inter-nuclear distance (bond distance) the energy touches a minimum. Any attempt to bring the nuclei still closer results in a sudden increase in energy and consequent destabilization of the molecule. Because of orbital overlap the electron density between the nuclei increases which helps in bringing them closer. It is however seen that the actual bond enthalpy and bond length values are not obtained by overlap alone and other variables have to be taken into account.
For explaining the characteristic shapes of polyatomic molecules Pauling introduced the concept of hybridisation of atomic orbitals. sp,sp2 , sp3 hybridizations of atomic orbitals of Be, B,C, N and O are used to explain the formation and geometrical shapes of molecules like BeCl2 , BCl3 , CH4 , NH3 and H2O. They also explain the formation of multiple bonds in molecules like C2H2 and C2H4 .
The molecular orbital (MO) theory describes bonding in terms of the combination and arrangment of atomic orbitals to form molecular orbitals that are associated with the molecule as a whole. The number of molecular orbitals are always equal to the number of atomic orbitals from which they are formed. Bonding molecular orbitals increase electron density between the nuclei and are lower in energy than the individual atomic orbitals. Antibonding molecular orbitals have a region of zero electron density between the nuclei and have more energy than the individual atomic orbitals.
The electronic configuration of the molecules is written by filling electrons in the molecular orbitals in the order of increasing energy levels. As in the case of atoms, the Pauli exclusion principle and Hund’s rule are applicable for the filling of molecular orbitals. Molecules are said to be stable if the number of elctrons in bonding molecular orbitals is greater than that in antibonding molecular orbitals.
Hydrogen bond is formed when a hydrogen atom finds itself between two highly electronegative atoms such as F, O and N. It may be intermolecular (existing between two or more molecules of the same or different substances) or intramolecular (present within the same molecule). Hydrogen bonds have a powerful effect on the structure and properties of many compounds.

You will learn

✓ Understand KÖssel-Lewis approach to chemical bonding
✓ Explain the octet rule and its limitations, draw Lewis structures of simple molecules
✓ Explain the formation of different types of bonds
✓ Describe the VSEPR theory and predict the geometry of simple molecules
✓ Explain the valence bond approach for the formation of covalent bonds
✓ Predict the directional properties of covalent bonds
✓ Explain the different types of hybridisation involving s, p and d orbitals and draw shapes of simple covalent molecules
✓ Describe the molecular orbital theory of homonuclear diatomic molecules
✓ Explain the concept of hydrogen bond

Requirements

• Basic understanding of chemistry and math’s

This course is for

• Complete Chemistry for Engineering and Medical Entrance Exam Preparation. ( IIT JEE Main | Advanced | BITSAT | SAT | NEET etc.)
• AP Chemistry | MSAT | MCAT | Course for high school, college
• Courses are suitable for students from over 160 countries from Europe, America, Middle East, Asia, Africa and APAC. Notably England, Germany, France, Sweden, Ireland, Scotland, USA, Canada, UAE, Saudi, Qatar, Kuwait, Malaysia, Indonesia, Myanmar, Newzealand, Australia, South Africa, South Korea, Nigeria, etc

How much does the Physical Chemistry - Chemical Bonding course cost? Is it worth it?

The course costs $14.99. And currently there is a 25% discount on the original price of the course, which was $24.99. So you save $10 if you enroll the course now.

Does the Physical Chemistry - Chemical Bonding course have a money back guarantee or refund policy?

YES, Physical Chemistry – Chemical Bonding has a 30-day money back guarantee. The 30-day refund policy is designed to allow students to study without risk.

Are there any SCHOLARSHIPS for this course?

Currently we could not find a scholarship for the Physical Chemistry - Chemical Bonding course, but there is a $10 discount from the original price ($24.99). So the current price is just $14.99.

Who is the instructor? Is studi live a SCAM or a TRUSTED instructor?

studi live has created 115 courses that got 13 reviews which are generally positive. studi live has taught 111 students and received a 4.4 average review out of 13 reviews. Depending on the information available, studi live is a TRUSTED instructor.
Online Learning
Studi Live is an Indian educational venture based in Mumbai. The founders of this portal are into education and technology domains since more than 20 years. Studi Live currently offers online and live lectures for IITJEE and NEET preparation.
The portal will eventually add courses for school students from 5th to 12th, Olympiads, Professional Courses, Commerce and Software Programming for all levels. The Studi Live portal, as the name suggests, offers online live lectures in interactive mode. The site uses highly safe and secure WEBEX platform for online lectures.
Unlike most of the other edtech portals, Studi Live is a collaborative and activity-based platform which strives to conform to the New Education Policy by the Government of India.

9.0

CourseMarks Score®

9.7

Freshness

N/A

Feedback

7.9

Content

Platform: Udemy
Video: 4h 1m
Language: English
Next start: On Demand

Students are also interested in

Review widget (for course creators):

Physical Chemistry - Chemical Bonding rating
Code for the widget (just copy and paste it to your site):
<a href="https://coursemarks.com/course/physical-chemistry-chemical-bonding/" target="_blank" title="Physical Chemistry – Chemical Bonding on Coursemarks.com"><img border="0" src="https://coursemarks.com/widget/90.svg" width="200px" alt="Physical Chemistry – Chemical Bonding rating"/></a>