Description
A living system grows, sustains and reproduces itself. The most amazing thing about a living system is that it is composed of non-living atoms and molecules. The pursuit of knowledge of what goes on chemically within a living system falls in the domain of biochemistry. Living systems are made up of various complex biomolecules like carbohydrates, proteins, nucleic acids, lipids, etc.
Proteins and carbohydrates are essential constituents of our food. These biomolecules interact with each other and constitute the molecular logic of life processes. In addition, some simple molecules like vitamins and mineral salts also play an important role in the functions of organisms. Structures and functions of some of these biomolecules are discussed in this Unit.
Summary
Carbohydrates are optically active polyhydroxy aldehydes or ketones or molecules which provide such units on hydrolysis. They are broadly classified into three groups — monosaccharides, disaccharides and polysaccharides. Glucose, the most important source of energy for mammals, is obtained by the digestion of starch. Monosaccharides are held together by glycosidic linkages to form disaccharides or polysaccharides.
Proteins are the polymers of about twenty different α-amino acids which are linked by peptide bonds. Ten amino acids are called essential amino acids because they cannot be synthesised by our body, hence must be provided through diet. Proteins perform various structural and dynamic functions in the organisms. Proteins which contain only α-amino acids are called simple proteins. The secondary or tertiary structure of proteins get disturbed on change of pH or temperature and they are not able to perform their functions. This is called denaturation of proteins. Enzymes are
biocatalysts which speed up the reactions in biosystems. They are very specific and selective in their action and chemically all enzymes are proteins.
Vitamins are accessory food factors required in the diet. They are classified as fat soluble (A, D, E and K) and water soluble (Β group and C). Deficiency of vitamins leads to many diseases.
Nucleic acids are the polymers of nucleotides which in turn consist of a base, a pentose sugar and phosphate moiety. Nucleic acids are responsible for the transfer of characters from parents to offsprings. There are two types of nucleic acids — DNA and RNA. DNA contains a five carbon sugar molecule called 2-deoxyribose whereas RNA contains ribose. Both DNA and RNA contain adenine, guanine and cytosine. The fourth base is thymine in DNA and uracil in RNA. The structure of DNA is a double strand whereas RNA is a single strand molecule. DNA is the chemical basis of heredity and have the coded message for proteins to be synthesised in the cell. There are three types of RNA — mRNA, rRNA and tRNA which actually carry out the protein synthesis in the cell.
Course Content
•Carbohydrates
•Carbohydrates(Classification)
•Classification of Carbohydrates (Based on solubility)
•Fischer Projection Formula
•Preparation of Glucose
•Chemical Properties (HI / NH2OH / HCN)
•Bromine Water and Nitric Acid
•Haworth Projection Formula
•Haworth Projection Formula (Fructose)
•Peptide Bond
•Classification of Proteins
•Denaturation of Proteins
•Enzymes
•DNA Double Helix
•Nucleic Acids
•Structure of Disaccharides
•Structure of Polysaccharides
•Structure of Protein
•Amino acids