Disclosure: when you buy through links on our site, we may earn an affiliate commission.

Building an Interpreter from scratch

Semantics of programming languages
(72 reviews)
349 students
Created by


CourseMarks Score®







Platform: Udemy
Price: $29.99
Video: 2h 59m
Language: English
Next start: On Demand

Top Programming Fundamentals courses:

Detailed Analysis

CourseMarks Score®

9.2 / 10

CourseMarks Score® helps students to find the best classes. We aggregate 18 factors, including freshness, student feedback and content diversity.

Freshness Score

9.3 / 10
This course was last updated on 9/2020.

Course content can become outdated quite quickly. After analysing 71,530 courses, we found that the highest rated courses are updated every year. If a course has not been updated for more than 2 years, you should carefully evaluate the course before enrolling.

Student Feedback

9.8 / 10
We analyzed factors such as the rating (4.8/5) and the ratio between the number of reviews and the number of students, which is a great signal of student commitment.

New courses are hard to evaluate because there are no or just a few student ratings, but Student Feedback Score helps you find great courses even with fewer reviews.

Content Score

7.8 / 10
Video Score: 8.0 / 10
The course includes 2h 59m video content. Courses with more videos usually have a higher average rating. We have found that the sweet spot is 16 hours of video, which is long enough to teach a topic comprehensively, but not overwhelming. Courses over 16 hours of video gets the maximum score.
The average video length is 6 hours 12 minutes of 136 Programming Fundamentals courses on Udemy.
Detail Score: 10.0 / 10

The top online course contains a detailed description of the course, what you will learn and also a detailed description about the instructor.

Extra Content Score: 5.5 / 10

Tests, exercises, articles and other resources help students to better understand and deepen their understanding of the topic.

This course contains:

0 article.
0 resource.
0 exercise.
0 test.

Table of contents


How programming languages work under the hood? What’s the difference between compiler and interpreter? What is a virtual machine, and JIT-compiler? And what about the difference between functional and imperative programming?
There are so many questions when it comes to implementing a programming language!
The problem with “compiler classes” in school is they usually are presented as some “hardcore rocket science” which is only for advanced engineers.
Moreover, classic compiler books start from the least significant topic, such as Lexical analysis, going right away deep down to the theoretical aspects of formal grammars. And by the time of implementing a first Tokenizer module, students simply lose an interest to the topic, not having a chance to actually start implementing a programing language itself. And all this is spread to a whole semester of messing with tokenizers and BNF grammars, without understanding an actual semantics of programming languages.
I believe we should be able to build and understand a full programming language semantics, end-to-end, in 4-6 hours — with a content going straight to the point, showed in live coding session as pair-programming, and described in a comprehensible way.
In the Essentials of Interpretations class we focus specifically on runtime semantics, and build a interpreter for a programming language very similar to JavaScript or Python.
Implementing a programing language would also make your practical usage level of other programming languages more professional.

Who this class is for?
This class is for any curious engineer, who would like to gain skills of building complex systems (and building a programming language is really a pretty advanced engineering task!), and obtain a transferable knowledge for building such systems.
If you are interested specifically in compilers, interpreters, and source code transformation tools, then this class is also for you.
The only pre-requisite for this class is basic data structures and algorithms: trees, lists, traversal.

What is used for implementation?
Since we build a language very similar in semantics to JavaScript or Python (the two most popular programming languages today) we use specifically JavaScript — its elegant multi-paradigm structure which combines functional programming, class-based, and prototype-based OOP fits ideal for that.
Many engineers are familiar with JavaScript so it should be easier to start coding right away. However in implementation we don’t rely on too specific to JS constructs, and the code from the course is easily portable to TypeScript, Python, Java, C++, Rust, and any other language of your taste.
Note: we want our students to actually follow, understand and implement every detail of the interpreter themselves, instead of just copy-pasting from final solution. The full source code for the language is available in video lectures, showing and guiding how to structure specific modules.

What’s specific in this class?

The main features of these lectures are:
•Concise and straight to the point. Each lecture is self-sufficient, concise, and describes information directly related to the topic, not distracting on unrelated materials or talks.
•Animated presentation combined with live-editing notes. This makes understanding of the topics easier, and shows how (and when at time) the object structures are connected. Static slides simply don’t work for a complex content.
•Live coding session end-to-end with assignments. The full source code, starting from scratch, and up to the very end is presented in the video lectures class. In the course we implement a full AST interpreter for our programming language.

Reading materials
As further reading and additional literature for this course the following books are recommended:
•Structure and Interpretation of Computer Programs (SICP) by Harold Abelson and Gerald Jay Sussman
•Programming Languages: Application and Interpretation (PLAI) by Shriram Krishnamurthi

What is in the course?

The course is divided into four parts, in total of 18 lectures, and many sub-topics in each lecture. Please address curriculum for detailed lectures descriptions.

In this part we describe different compilation and interpretation pipelines, see the difference between JIT-compilers and AOT-compilers, talk about what is a Virtual machine and Bytecode-interpreter, and how it difference from an AST-interpreter, show examples of native code, and LLVM IR, and other topics.

In this part we start building our programming language, and consider basic expressions, such as numbers, strings, talk about variables, scopes, and lexical environments, control structures, and touching parser generator.

In this part we start talking and implementing function abstraction, and function calls. We describe concept of closures, lambda function, and IILEs (Immediately-invoked lambda expressions). In addition, we touch topics of Call-stack, recursion, and syntactic sugar.

The final part of the course is devoted to the object-oriented support in our language. We describe the class-based, and prototype-based approaches, implement concept of classes, instance and modules.

I hope you’ll enjoy the class, and will be glad to discuss any questions and suggestion in comments.

– Dmitry Soshnikov

You will learn

✓ Build a programing language from scratch
✓ Interpreters and Compilers
✓ AOT, JIT-compilers and Transpilers
✓ AST-interpreters and Virtual Machines
✓ Bytecode, LLVM, Stack-machines
✓ First-class functions, Lambdas and Closures
✓ Call-stack and Activation Records
✓ OOP: Classes, Instances and Prototypes
✓ Modules and Abstractions


• Basic data structures and algorithms
• Graphs, trees, traversal

This course is for

• Curious engineers who want to know and understand how programming languages work under the hood

How much does the Building an Interpreter from scratch course cost? Is it worth it?

The course costs $29.99.
The average price is $14.4 of 136 Programming Fundamentals courses. So this course is 108% more expensive than the average Programming Fundamentals course on Udemy.

Does the Building an Interpreter from scratch course have a money back guarantee or refund policy?

YES, Building an Interpreter from scratch has a 30-day money back guarantee. The 30-day refund policy is designed to allow students to study without risk.

Are there any SCHOLARSHIPS for this course?

At the moment we could not find an available scholarship for Building an Interpreter from scratch.

Who is the instructor? Is Dmitry Soshnikov a SCAM or a TRUSTED instructor?

Dmitry Soshnikov has created 10 courses that got 264 reviews which are generally positive. Dmitry Soshnikov has taught 3,633 students and received a 4.7 average review out of 264 reviews. Depending on the information available, Dmitry Soshnikov is a TRUSTED instructor.
Software engineer and Instructor
Dmitry Soshnikov is a Software engineer, and a lecturer on different computer science topics. He is passioned about education, and focuses on high-quality educational content: concise and straight to the point animated lectures with live-editing notes.You will learn:- Compilers and interpreters: building a Programing language- Garbage Collectors (Automatic memory management)- Theory of programming languages- Automata Theory: Building a RegExp machine- Parsers theory: Implementing a Parser Generator


CourseMarks Score®







Platform: Udemy
Price: $29.99
Video: 2h 59m
Language: English
Next start: On Demand

Students are also interested in

Get this widget on your website (for course creators):

Building an Interpreter from scratch rating
Copy this code and paste it to your website:
<a href="https://coursemarks.com/course/building-an-interpreter-from-scratch/" target="_blank" title="Building an Interpreter from scratch on Coursemarks.com"><img border="0" src="https://coursemarks.com/widget/93.svg" width="200px" alt="Building an Interpreter from scratch rating"/></a>